3.233 \(\int x^{3/2} (A+B x^2) (b x^2+c x^4)^{3/2} \, dx\)

Optimal. Leaf size=447 \[ -\frac{4 b^{17/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (11 b B-21 A c) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{3315 c^{15/4} \sqrt{b x^2+c x^4}}-\frac{8 b^2 x^{5/2} \sqrt{b x^2+c x^4} (11 b B-21 A c)}{13923 c^2}-\frac{8 b^4 x^{3/2} \left (b+c x^2\right ) (11 b B-21 A c)}{3315 c^{7/2} \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{b x^2+c x^4}}+\frac{8 b^3 \sqrt{x} \sqrt{b x^2+c x^4} (11 b B-21 A c)}{9945 c^3}+\frac{8 b^{17/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (11 b B-21 A c) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{3315 c^{15/4} \sqrt{b x^2+c x^4}}-\frac{4 b x^{9/2} \sqrt{b x^2+c x^4} (11 b B-21 A c)}{1547 c}-\frac{2 x^{5/2} \left (b x^2+c x^4\right )^{3/2} (11 b B-21 A c)}{357 c}+\frac{2 B \sqrt{x} \left (b x^2+c x^4\right )^{5/2}}{21 c} \]

[Out]

(-8*b^4*(11*b*B - 21*A*c)*x^(3/2)*(b + c*x^2))/(3315*c^(7/2)*(Sqrt[b] + Sqrt[c]*x)*Sqrt[b*x^2 + c*x^4]) + (8*b
^3*(11*b*B - 21*A*c)*Sqrt[x]*Sqrt[b*x^2 + c*x^4])/(9945*c^3) - (8*b^2*(11*b*B - 21*A*c)*x^(5/2)*Sqrt[b*x^2 + c
*x^4])/(13923*c^2) - (4*b*(11*b*B - 21*A*c)*x^(9/2)*Sqrt[b*x^2 + c*x^4])/(1547*c) - (2*(11*b*B - 21*A*c)*x^(5/
2)*(b*x^2 + c*x^4)^(3/2))/(357*c) + (2*B*Sqrt[x]*(b*x^2 + c*x^4)^(5/2))/(21*c) + (8*b^(17/4)*(11*b*B - 21*A*c)
*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4
)], 1/2])/(3315*c^(15/4)*Sqrt[b*x^2 + c*x^4]) - (4*b^(17/4)*(11*b*B - 21*A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b
+ c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(3315*c^(15/4)*Sqrt[b*x
^2 + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.589558, antiderivative size = 447, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 8, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {2039, 2021, 2024, 2032, 329, 305, 220, 1196} \[ -\frac{8 b^2 x^{5/2} \sqrt{b x^2+c x^4} (11 b B-21 A c)}{13923 c^2}-\frac{8 b^4 x^{3/2} \left (b+c x^2\right ) (11 b B-21 A c)}{3315 c^{7/2} \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{b x^2+c x^4}}+\frac{8 b^3 \sqrt{x} \sqrt{b x^2+c x^4} (11 b B-21 A c)}{9945 c^3}-\frac{4 b^{17/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (11 b B-21 A c) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{3315 c^{15/4} \sqrt{b x^2+c x^4}}+\frac{8 b^{17/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (11 b B-21 A c) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{3315 c^{15/4} \sqrt{b x^2+c x^4}}-\frac{4 b x^{9/2} \sqrt{b x^2+c x^4} (11 b B-21 A c)}{1547 c}-\frac{2 x^{5/2} \left (b x^2+c x^4\right )^{3/2} (11 b B-21 A c)}{357 c}+\frac{2 B \sqrt{x} \left (b x^2+c x^4\right )^{5/2}}{21 c} \]

Antiderivative was successfully verified.

[In]

Int[x^(3/2)*(A + B*x^2)*(b*x^2 + c*x^4)^(3/2),x]

[Out]

(-8*b^4*(11*b*B - 21*A*c)*x^(3/2)*(b + c*x^2))/(3315*c^(7/2)*(Sqrt[b] + Sqrt[c]*x)*Sqrt[b*x^2 + c*x^4]) + (8*b
^3*(11*b*B - 21*A*c)*Sqrt[x]*Sqrt[b*x^2 + c*x^4])/(9945*c^3) - (8*b^2*(11*b*B - 21*A*c)*x^(5/2)*Sqrt[b*x^2 + c
*x^4])/(13923*c^2) - (4*b*(11*b*B - 21*A*c)*x^(9/2)*Sqrt[b*x^2 + c*x^4])/(1547*c) - (2*(11*b*B - 21*A*c)*x^(5/
2)*(b*x^2 + c*x^4)^(3/2))/(357*c) + (2*B*Sqrt[x]*(b*x^2 + c*x^4)^(5/2))/(21*c) + (8*b^(17/4)*(11*b*B - 21*A*c)
*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4
)], 1/2])/(3315*c^(15/4)*Sqrt[b*x^2 + c*x^4]) - (4*b^(17/4)*(11*b*B - 21*A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b
+ c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(3315*c^(15/4)*Sqrt[b*x
^2 + c*x^4])

Rule 2039

Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Sim
p[(d*e^(j - 1)*(e*x)^(m - j + 1)*(a*x^j + b*x^(j + n))^(p + 1))/(b*(m + n + p*(j + n) + 1)), x] - Dist[(a*d*(m
 + j*p + 1) - b*c*(m + n + p*(j + n) + 1))/(b*(m + n + p*(j + n) + 1)), Int[(e*x)^m*(a*x^j + b*x^(j + n))^p, x
], x] /; FreeQ[{a, b, c, d, e, j, m, n, p}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] && NeQ[
m + n + p*(j + n) + 1, 0] && (GtQ[e, 0] || IntegerQ[j])

Rule 2021

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b
*x^n)^p)/(c*(m + n*p + 1)), x] + Dist[(a*(n - j)*p)/(c^j*(m + n*p + 1)), Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p
- 1), x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && G
tQ[p, 0] && NeQ[m + n*p + 1, 0]

Rule 2024

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n +
 1)*(a*x^j + b*x^n)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^(n - j)*(m + j*p - n + j + 1))/(b*(m + n*p + 1)
), Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j
, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p + 1 - n + j, 0] && NeQ[m + n*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int x^{3/2} \left (A+B x^2\right ) \left (b x^2+c x^4\right )^{3/2} \, dx &=\frac{2 B \sqrt{x} \left (b x^2+c x^4\right )^{5/2}}{21 c}-\frac{\left (2 \left (\frac{11 b B}{2}-\frac{21 A c}{2}\right )\right ) \int x^{3/2} \left (b x^2+c x^4\right )^{3/2} \, dx}{21 c}\\ &=-\frac{2 (11 b B-21 A c) x^{5/2} \left (b x^2+c x^4\right )^{3/2}}{357 c}+\frac{2 B \sqrt{x} \left (b x^2+c x^4\right )^{5/2}}{21 c}-\frac{(2 b (11 b B-21 A c)) \int x^{7/2} \sqrt{b x^2+c x^4} \, dx}{119 c}\\ &=-\frac{4 b (11 b B-21 A c) x^{9/2} \sqrt{b x^2+c x^4}}{1547 c}-\frac{2 (11 b B-21 A c) x^{5/2} \left (b x^2+c x^4\right )^{3/2}}{357 c}+\frac{2 B \sqrt{x} \left (b x^2+c x^4\right )^{5/2}}{21 c}-\frac{\left (4 b^2 (11 b B-21 A c)\right ) \int \frac{x^{11/2}}{\sqrt{b x^2+c x^4}} \, dx}{1547 c}\\ &=-\frac{8 b^2 (11 b B-21 A c) x^{5/2} \sqrt{b x^2+c x^4}}{13923 c^2}-\frac{4 b (11 b B-21 A c) x^{9/2} \sqrt{b x^2+c x^4}}{1547 c}-\frac{2 (11 b B-21 A c) x^{5/2} \left (b x^2+c x^4\right )^{3/2}}{357 c}+\frac{2 B \sqrt{x} \left (b x^2+c x^4\right )^{5/2}}{21 c}+\frac{\left (4 b^3 (11 b B-21 A c)\right ) \int \frac{x^{7/2}}{\sqrt{b x^2+c x^4}} \, dx}{1989 c^2}\\ &=\frac{8 b^3 (11 b B-21 A c) \sqrt{x} \sqrt{b x^2+c x^4}}{9945 c^3}-\frac{8 b^2 (11 b B-21 A c) x^{5/2} \sqrt{b x^2+c x^4}}{13923 c^2}-\frac{4 b (11 b B-21 A c) x^{9/2} \sqrt{b x^2+c x^4}}{1547 c}-\frac{2 (11 b B-21 A c) x^{5/2} \left (b x^2+c x^4\right )^{3/2}}{357 c}+\frac{2 B \sqrt{x} \left (b x^2+c x^4\right )^{5/2}}{21 c}-\frac{\left (4 b^4 (11 b B-21 A c)\right ) \int \frac{x^{3/2}}{\sqrt{b x^2+c x^4}} \, dx}{3315 c^3}\\ &=\frac{8 b^3 (11 b B-21 A c) \sqrt{x} \sqrt{b x^2+c x^4}}{9945 c^3}-\frac{8 b^2 (11 b B-21 A c) x^{5/2} \sqrt{b x^2+c x^4}}{13923 c^2}-\frac{4 b (11 b B-21 A c) x^{9/2} \sqrt{b x^2+c x^4}}{1547 c}-\frac{2 (11 b B-21 A c) x^{5/2} \left (b x^2+c x^4\right )^{3/2}}{357 c}+\frac{2 B \sqrt{x} \left (b x^2+c x^4\right )^{5/2}}{21 c}-\frac{\left (4 b^4 (11 b B-21 A c) x \sqrt{b+c x^2}\right ) \int \frac{\sqrt{x}}{\sqrt{b+c x^2}} \, dx}{3315 c^3 \sqrt{b x^2+c x^4}}\\ &=\frac{8 b^3 (11 b B-21 A c) \sqrt{x} \sqrt{b x^2+c x^4}}{9945 c^3}-\frac{8 b^2 (11 b B-21 A c) x^{5/2} \sqrt{b x^2+c x^4}}{13923 c^2}-\frac{4 b (11 b B-21 A c) x^{9/2} \sqrt{b x^2+c x^4}}{1547 c}-\frac{2 (11 b B-21 A c) x^{5/2} \left (b x^2+c x^4\right )^{3/2}}{357 c}+\frac{2 B \sqrt{x} \left (b x^2+c x^4\right )^{5/2}}{21 c}-\frac{\left (8 b^4 (11 b B-21 A c) x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{3315 c^3 \sqrt{b x^2+c x^4}}\\ &=\frac{8 b^3 (11 b B-21 A c) \sqrt{x} \sqrt{b x^2+c x^4}}{9945 c^3}-\frac{8 b^2 (11 b B-21 A c) x^{5/2} \sqrt{b x^2+c x^4}}{13923 c^2}-\frac{4 b (11 b B-21 A c) x^{9/2} \sqrt{b x^2+c x^4}}{1547 c}-\frac{2 (11 b B-21 A c) x^{5/2} \left (b x^2+c x^4\right )^{3/2}}{357 c}+\frac{2 B \sqrt{x} \left (b x^2+c x^4\right )^{5/2}}{21 c}-\frac{\left (8 b^{9/2} (11 b B-21 A c) x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{3315 c^{7/2} \sqrt{b x^2+c x^4}}+\frac{\left (8 b^{9/2} (11 b B-21 A c) x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{c} x^2}{\sqrt{b}}}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{3315 c^{7/2} \sqrt{b x^2+c x^4}}\\ &=-\frac{8 b^4 (11 b B-21 A c) x^{3/2} \left (b+c x^2\right )}{3315 c^{7/2} \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{b x^2+c x^4}}+\frac{8 b^3 (11 b B-21 A c) \sqrt{x} \sqrt{b x^2+c x^4}}{9945 c^3}-\frac{8 b^2 (11 b B-21 A c) x^{5/2} \sqrt{b x^2+c x^4}}{13923 c^2}-\frac{4 b (11 b B-21 A c) x^{9/2} \sqrt{b x^2+c x^4}}{1547 c}-\frac{2 (11 b B-21 A c) x^{5/2} \left (b x^2+c x^4\right )^{3/2}}{357 c}+\frac{2 B \sqrt{x} \left (b x^2+c x^4\right )^{5/2}}{21 c}+\frac{8 b^{17/4} (11 b B-21 A c) x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{3315 c^{15/4} \sqrt{b x^2+c x^4}}-\frac{4 b^{17/4} (11 b B-21 A c) x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{3315 c^{15/4} \sqrt{b x^2+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.175096, size = 138, normalized size = 0.31 \[ \frac{2 \sqrt{x} \sqrt{x^2 \left (b+c x^2\right )} \left (\left (b+c x^2\right )^2 \sqrt{\frac{c x^2}{b}+1} \left (-b c \left (147 A+143 B x^2\right )+13 c^2 x^2 \left (21 A+17 B x^2\right )+77 b^2 B\right )+7 b^3 (21 A c-11 b B) \, _2F_1\left (-\frac{3}{2},\frac{3}{4};\frac{7}{4};-\frac{c x^2}{b}\right )\right )}{4641 c^3 \sqrt{\frac{c x^2}{b}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(3/2)*(A + B*x^2)*(b*x^2 + c*x^4)^(3/2),x]

[Out]

(2*Sqrt[x]*Sqrt[x^2*(b + c*x^2)]*((b + c*x^2)^2*Sqrt[1 + (c*x^2)/b]*(77*b^2*B + 13*c^2*x^2*(21*A + 17*B*x^2) -
 b*c*(147*A + 143*B*x^2)) + 7*b^3*(-11*b*B + 21*A*c)*Hypergeometric2F1[-3/2, 3/4, 7/4, -((c*x^2)/b)]))/(4641*c
^3*Sqrt[1 + (c*x^2)/b])

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 494, normalized size = 1.1 \begin{align*}{\frac{2}{69615\, \left ( c{x}^{2}+b \right ) ^{2}{c}^{4}} \left ( c{x}^{4}+b{x}^{2} \right ) ^{{\frac{3}{2}}} \left ( 3315\,B{x}^{12}{c}^{6}+4095\,A{x}^{10}{c}^{6}+7800\,B{x}^{10}b{c}^{5}+10080\,A{x}^{8}b{c}^{5}+4665\,B{x}^{8}{b}^{2}{c}^{4}+6405\,A{x}^{6}{b}^{2}{c}^{4}-40\,B{x}^{6}{b}^{3}{c}^{3}+1764\,A\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ){b}^{5}c-882\,A\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ){b}^{5}c-924\,B\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ){b}^{6}+462\,B\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ){b}^{6}-168\,A{x}^{4}{b}^{3}{c}^{3}+88\,B{x}^{4}{b}^{4}{c}^{2}-588\,A{x}^{2}{b}^{4}{c}^{2}+308\,B{x}^{2}{b}^{5}c \right ){x}^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)*(B*x^2+A)*(c*x^4+b*x^2)^(3/2),x)

[Out]

2/69615*(c*x^4+b*x^2)^(3/2)/x^(7/2)/(c*x^2+b)^2/c^4*(3315*B*x^12*c^6+4095*A*x^10*c^6+7800*B*x^10*b*c^5+10080*A
*x^8*b*c^5+4665*B*x^8*b^2*c^4+6405*A*x^6*b^2*c^4-40*B*x^6*b^3*c^3+1764*A*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/
2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-
b*c)^(1/2))^(1/2),1/2*2^(1/2))*b^5*c-882*A*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2)
)/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))
*b^5*c-924*B*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-
b*c)^(1/2))^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*b^6+462*B*((c*x+(-b*c)^(1/2))
/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*
x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*b^6-168*A*x^4*b^3*c^3+88*B*x^4*b^4*c^2-588*A*x^2*b^4*c^2+308*
B*x^2*b^5*c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{4} + b x^{2}\right )}^{\frac{3}{2}}{\left (B x^{2} + A\right )} x^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(B*x^2+A)*(c*x^4+b*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((c*x^4 + b*x^2)^(3/2)*(B*x^2 + A)*x^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B c x^{7} +{\left (B b + A c\right )} x^{5} + A b x^{3}\right )} \sqrt{c x^{4} + b x^{2}} \sqrt{x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(B*x^2+A)*(c*x^4+b*x^2)^(3/2),x, algorithm="fricas")

[Out]

integral((B*c*x^7 + (B*b + A*c)*x^5 + A*b*x^3)*sqrt(c*x^4 + b*x^2)*sqrt(x), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)*(B*x**2+A)*(c*x**4+b*x**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{4} + b x^{2}\right )}^{\frac{3}{2}}{\left (B x^{2} + A\right )} x^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(B*x^2+A)*(c*x^4+b*x^2)^(3/2),x, algorithm="giac")

[Out]

integrate((c*x^4 + b*x^2)^(3/2)*(B*x^2 + A)*x^(3/2), x)